Graph Learning Under Partial Observability

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Abduction under Partial Observability

Juba recently proposed a formulation of learning abductive reasoning from examples, in which both the relative plausibility of various explanations, as well as which explanations are valid, are learned directly from data. The main shortcoming of this formulation of the task is that it assumes access to full-information (i.e., fully specified) examples; relatedly, it offers no role for declarati...

متن کامل

Synchronizing Strategies under Partial Observability

Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has been intensively studied for systems that do not provide any information about their configuratio...

متن کامل

Strong planning under partial observability

Rarely planning domains are fully observable. For this reason, the ability to deal with partial observability is one of the most important challenges in planning. In this paper, we tackle the problem of strong planning under partial observability in nondeterministic domains: find a conditional plan that will result in a successful state, regardless of multiple initial states, nondeterministic a...

متن کامل

QMDP-Net: Deep Learning for Planning under Partial Observability

This paper introduces the QMDP-net, a neural network architecture for planning under partial observability. The QMDP-net combines the strengths of model-free learning and model-based planning. It is a recurrent policy network, but it represents a policy for a parameterized set of tasks by connecting a model with a planning algorithm that solves the model, thus embedding the solution structure o...

متن کامل

Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability

Interesting real-world datasets often exhibit nonlinear, noisy, continuous-valued states that are unexplorable, are poorly described by first principles, and are only partially observable. If partial observability can be overcome, these constraints suggest the use of model-based reinforcement learning. We experiment with manifold embeddings to reconstruct the observable state-space in the conte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the IEEE

سال: 2020

ISSN: 0018-9219,1558-2256

DOI: 10.1109/jproc.2020.3013432